Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior
نویسندگان
چکیده
منابع مشابه
Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کاملNonlinear Models Using Dirichlet Process Mixtures
We introduce a new nonlinear model for classification, in which we model the joint distribution of response variable, y, and covariates, x, non-parametrically using Dirichlet process mixtures. We keep the relationship between y and x linear within each component of the mixture. The overall relationship becomes nonlinear if the mixture contains more than one component, with different regression ...
متن کاملDynamic Semiparametric Factor Models
High-dimensional regression problems which reveal dynamic behavior occur frequently in many different fields of science. The dynamics of the whole complex system is typically analyzed by time propagation of few number of factors, which are loaded with time invariant functions of exploratory variables. In this thesis we consider dynamic semiparametric factor model, which assumes nonparametric lo...
متن کاملBayesian population size estimation using Dirichlet process mixtures.
We introduce a new Bayesian nonparametric method for estimating the size of a closed population from multiple-recapture data. Our method, based on Dirichlet process mixtures, can accommodate complex patterns of heterogeneity of capture, and can transparently modulate its complexity without a separate model selection step. Additionally, it can handle the massively sparse contingency tables gener...
متن کاملCost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors
Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: British Journal of Mathematical and Statistical Psychology
سال: 2011
ISSN: 0007-1102
DOI: 10.1348/000711010x497262